
With microservices at scale, Developers, DevOps, and Security teams struggle to confirm
that the software they deliver to end users is safe for consumption. A microservice
environment obfuscates application-level security reporting, impact analysis, inventory,
or even knowing whom to call when an end-user reports an issue. Ortelius is an open-
source, centralized ‘evidence store’ of supply chain data that clarifies these complexities,
making what’s hard about cloud-native computing easy. Ortelius is governed by the
Continuous Delivery Foundation a part of the Linux Foundation.

Ortelius collects supply chain and DevOps intelligence data generated by the DevOps
Pipeline. The data gathered gives IT Teams critical insights about the software they
deliver to end users. Ortelius clarifies ‘logical’ application composition, aggregates
SBOM and CVE reports from lower-level dependencies and tracks open-source usage
across all environments.

Govern the Microservice Supply Chain

and deliver secure, high-quality

microservices at scale.

Why Use Ortelius

http://Ortelius.io
http://cd.foundation

Table of Contents

Installing the CI/CD CLI for Pipeline Automation 4

Steps for Running the Proof of Concept 6

Expected Results 11

2

Ortelius CLI Data Gathering using the .toml File 5

Installing Ortelius One-Premise 4

Ortelius POC Success Criteria 3

Get Help 13

Next Steps 13

Implementing the Ortelius centralized catalog of supply chain evidence will ensure that
teams can deliver secure, high-quality microservices at scale by exposing the following:

Supply Chain Security

Ortelus will integrate into the DevOps pipeline consuming component-level SBOMs and
producing CVE reports for each new version of a component.

Ortelius will produce application-level SBOMs and CVE reports for all logical applications
impacted by a lower-level component change.

A Supply Chain Evidence Store

Ortelius POC Success Criteria

Versioning and Component to Application Dependency Management

Ortelius will track updates and create new versions of components (containers, DB objects, File
based objects) that are being continuously pushed across the supply chain.

Ortelius will automatically create new logical application versions based on changes occurring at
the lower component dependency level.

Ortelius will show the ‘many-to-many’ relationships between components and the logical
applications that consume them.

Service Ownership and Organization

Ortelius will track component ownership and provide a simple method of knowing whom to call
when a lower-level object has an issue that impacts multiple teams.

3

Component and Open-Source Usage and Inventory

Ortelius will provide the ability to search for open-source packages across all logical applications.

Installing Ortelius One-Premise

A SaaS Option

DeployHub, the core contributors of Ortelius, offers a free SaaS option called DeployHub Team. Sign-up for
the DeployHub SaaS option at deployhub.com/microservice-dashboard. You will be asked to enter a UserID/
Password, Company and Project name. Your UserID/Password and Company name are unique. Once you
login, your Project will be a found under your Company‘s high-level Domain.

Note: If another user signs up with the same Company name, they will be informed that they must contact the
Administrator for access to your DeployHub account. The Administrator is the first person who signed up to
DeployHub with that Company name.

A Supply Chain Evidence Store

4

Ortelius can be installed into your own cloud environment, or onto a hosted cloud environment.
Ortelius uses Helm to manage and perform the installation. The process includes the installation
of multiple containers. The Ortelius on-premise Helm chart and instructions can be found at
ArtifactHub. This is the location for the most up to date instructions for downloading and running the
Ortelius Helm chart. (https://artifacthub.io/packages/helm/ortelius/ortelius)

Regardless if you are running the DeployHub Team SaaS version or an Ortelius on-premise version, you will need
to install the Oretelius CI/CD Command Line Interface (CLI) to automate the gather of supply chain data from
your pipeline workflows.

The Ortelius CLI gathers supply chain data based on a single pipeline workflow at the build and deploy steps.
The CLI will support any CI/CD engine, but does require Python. The build step gathers Swagger, SBOM, Read-
me, licenses, Git data, Docker image, and other build output. The deploy step records when a release occurs,
what was sent and where the objects were sent to.

To complete your POC you will need to install the Ortelius CLI where your CI/CD server is running. Refer to
the Ortelius GitHub CLI Documentation (https://github.com/Ortelius/cli/blob/main/doc/dh.md) for installation
instructions.

Installing the CI/CD CLI for Pipeline Automation

http://www.deployhub.com
https://www.deployhub.com/microservice-dashboard
https://console.deployhub.com.
https://artifacthub.io/packages/helm/ortelius/ortelius
https://artifacthub.io/packages/helm/ortelius/ortelius
https://github.com/Ortelius/cli/blob/main/doc/dh.md

A Supply Chain Evidence Store

Ortelius CLI Data Gathering using the .toml File

The Ortelius CLI reads from a .toml file. The .toml file contains non-derived information for each artifact that you
create at your build step. In Ortelius, an artifact is referred to as a Component. A Component is a Container, DB
Object, or file object (.jar, Lamda Function, Apex file, etc.). The .toml file will provide the ‘non-derived’ data for the
Component your are tracking in Ortelius which includes the Component name, owner, Component type, and own-
er contact details. The Ortelius CLI will read the .toml file from the Git Repository associated to your pipeline. If
you are using a mono repository for your entire codebase, you will need a separate Component.toml file for each
Component, managed in sub-directories.

In a cloud-native, microservice architecture there are many, if not hundreds, of Components. Organizing your
Components within Ortelius is done in two ways. They are grouped based on a subject Domain and assigned to
a logical Application. Not all Components need to be assigned to an Application, but they should be stored in a
subject matter Domain so they can be easily found and reused.

 A logical Application is a collection of Components that make up a complete software systems consumed by an
end user. Applications are composed of shared Components and Application specific Components, and are a
logical representation of what Components need to be deployed in order for the software system to run.

Note: Once created, your .toml file does not need to be updated unless the non-derived information changes,
or you want to reorganize to which Applications or Domains the Component has been assigned. For example, a
Component has been reassigned to a new owner and new team represented by a Domain or Application.

5

https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation

Steps for Running the Proof of Concept

6

Step 1 - Define Your Ortelius Pipeline Variables

The following variables should be set at the beginning of your Pipeline.

DHURL - URL to Ortelius Login
DHUSER - The ID used to log into Ortelius
DHPASS - The password used to log into Ortelius. This can encrypted based on the CI/CD solution.
DOCKERREPO -Name of your Docker Repository .For Components that are Docker Images. Not needed for
non-docker objects.
IMAGE_TAG - Tag for the Docker Image if used . For Components that are Docker Images. Not needed for
non-docker objects.

Example:

export DHURL=https://console.ortelius.com
export DHUSER=Stella99
export DHPASS=chasinghorses
export DOCKERREPO=quay.io/Ortelius/hello-world
export IMAGE_TAG=1.0.0

To automate Ortelius, you will need to add it’s data gathering to your CI/CD pipeline. The following steps will
guide you through the process of implementing the Ortelius CLI to implement your Proof of Concept. Be sure
you have installed the Ortelius CLI before you start.

Note: This POC does not include data gathering of the deployment for inventory tracking.

A Supply Chain Evidence Store

7

 Step 2 - Create your Component.toml file

Cut and paste the following into a component.toml file, update ‘your’ information, and commit/push it to your Git
Repository.

Application Name and Version - optional. If not used the Component will not be associated to an Application

Application = “GLOBAL.your Application Name”
Application_Version = “your Application Version”

Define Component Name, Variant and Version - required
Name = “GLOBAL.your Component Name”
Variant = “${GIT_BRANCH}”
Version = “vyour Component Version.${BUILD_NUM}-g${SHORT_SHA}”

Key/Values to associate to the Component Version
[Attributes]
 DockerBuildDate = “${BLDDATE}”
 DockerRepo = “${DOCKERREPO}”
 DockerSha = “${DIGEST}”
 DockerTag = “${IMAGE_TAG}”
 DiscordChannel = “Your Discord Channel” or SlackChannel=”Your Slack Channel”
 ServiceOwner= “${DHUSER}”
 ServiceOwnerEmail = “Your Component Owner Email”

A Supply Chain Evidence Store

8

Example:

Application Name and Version
Application = “GLOBAL.Santa Fe Software.Online Store Company.Hipster Store.Prod.helloworld app”
Application_Version = “1”

Define Component Name, Variant and Version
Name = “GLOBAL.Santa Fe Software.Online Store Company”
Variant = “${GIT_BRANCH}”
Version = “v1.0.0.${BUILD_NUM}-g${SHORT_SHA}”

Key/Values to associate to the Component Version
[Attributes]
 DockerBuildDate = “${BLDDATE}”
 DockerRepo = “${DOCKERREPO}”
 DockerSha = “${DIGEST}”
 DockerTag = “${IMAGE_TAG}”
 DiscordChannel = “ttps://discord.gg/wM4b5yEFzS”
 ServiceOwner= “${DHUSER}”
 ServiceOwnerEmail = “stella@DeployHub.io”

Note: For SaaS users, you will have a second high-level qualifier that was created as part of your sign-up.
This second high-level qualifier must be used as the start of your Application Name and Component Name.
For example: GLOBAL.Santa Fe Software.Online Store.

A Supply Chain Evidence Store

9

Step 3 - Add a step in your pipeline to run Syft if you are not generating SBOMS (Optional)

Ortelius can consume any SPDX and CycloneDX formatted SBOM. If you are already generating SBOMs,
you will pass the name of the SBOM results to Ortelius is step 4 below. If you are not generating SBOMs as
part of your pipeline process, you will need to add SBOM generation to collect the lower dependency data.
Following is how to add Syft to your workflow to include the collection of SBOM data.

Syft SBOM tool (https://github.com/anchore/syft) will generate Software Bill of Material Reports for popular
coding languages and package managers, including Docker images.

The following code example scans a Docker Image to generate the SBOM. See Syft Options (https://github.
com/anchore/syft#supported-sources) to scan other objects and coding languages.

install Syft
curl -sSfL https://raw.githubusercontent.com/anchore/syft/main/install.sh | sh -s -- -b $PWD

create the SBOM
../syft packages $DOCKERREPO:$IMAGE_TAG --scope all-layers -o cyclonedx-json > cyclonedx.json

display the SBOM
cat cyclonedx.json

https://github.com/anchore/syft
https://github.com/anchore/syft#supported-sources)

A Supply Chain Evidence Store

Step 4 - Run the Ortelius CLI to add Your Component and Create an Application

Execute the following calls to the Ortelius CLI as part of your workflow. It should be called after the build
and SBOM generation:

With CycloneDX SBOM

dh updatecomp --rsp component.toml --deppkg “cyclonedx@name of your SBOM file”

Example:
dh updatecomp --rsp component.toml --deppkg “cyclonedx@cyclonedx.json”

With SPDX SBOM

dh updatecomp --rsp component.toml --deppkg “spdx@name of your SBOM file. “

Example:
dh updatecomp --rsp component.toml --deppkg “spdx@spdx.json”

Without SBOM

dh updatecomp --rsp component.toml

10

Expected Results

Application to Component Dependencies

Application Level SBOM and CVE

11

Select Your Application from the ‘Application View.’ It should show you one Component as a dependency.

Review the Application SBOM and vulnerabilities. Note: CVE Results may vary depending on the time of
the scan.

Bring up your Ortelius URL and login using the DHUSER and DHPASS from Step 1.

A Supply Chain Evidence Store

Component Ownership

12

Go to the ‘Application View.’ Select ‘Package Search’ from the high-level menu. Enter a package
name such as ‘spring’ to identify all locations where the package is used.

Go to the ‘Component View’. You should see your Component Ownership and Detail, including its
SBOM and vulnerabilities.

Package Search

After completing these initial POC steps, you can add additional
Components to your Application, update them via your pipeline,
and view how Ortelius creates new versions of both Components
and Applications overtime. Each time a Component is updated, you
will see that a new version of all impacted “logical” Applications
have been captured, showing you what changed.

You can also add CLI integration to your deployments and begin
tracking your service inventory across all clusters, controlling drift
and proactively understanding your ‘blast radius” caused by a single
service update.

Thank you for your interest in Ortelius.

Next Steps

About the CD Foundation

The Continuous Delivery
Foundation (CDF) serves as the
vendor-neutral home of many of
the fastest-growing projects for
continuous integration/continuous
delivery (CI/CD). It fosters vendor-
neutral collaboration between the
industry’s top developers, end
users and vendors to further CI/
CD best practices and industry
specifications. Its mission is to grow
and sustain projects that are part of
the broad and growing continuous
delivery ecosystem.

Learn more about the Continuous
Delivery Foundation at
CD.Foundation

Help us create the best, open source
microservice catalog available at ortelius.io.
We believe everyone has something to offer in
solving the microservice management puzzle.
We would love to have you on board.

13

Get Involved in Open-Source

Get Help

Report an Issue: https://github.com/ortelius/ortelius/issues

Community Discord Channel: https://discord.gg/wM4b5yEFzS

Ortelius Documentation: https://docs.ortelius.io/guides/

http://CD.Foundation
http://ortelius.io
https://github.com/ortelius/ortelius/issues
https://discord.gg/wM4b5yEFzS
https://docs.ortelius.io/guides/

